
At a glance50

Shrink your product-con-
troller costs50

Reverse-engineering52

Encapsulating USB............54

For more information58

SNICKER ABOUT PLAYING GAMES AT WORK,

BUT THE LOW COST, APPROPRIATE FEATURES,

AND AVAILABILITY OF GAMEBOY RESOURCES

MIGHT CHANGE YOUR MIND ABOUT USING IT

AS A NONGAMING, HANDHELD TERMINAL.

It started with a “no thank you.” I had

asked for the technical specification for the

Nintendo Gameboy game-link interface so that

I could explore connecting it to USB and to an

802.11b wireless access station. This hands-on

project looked finished before it had even be-

gun because that interface specification would

not be available. Not easily discouraged, I searched for and
found a world of independent, public support for the Game-
boy platform that I had no idea existed (references 1, 2, 3,
and 4). Official information was unnecessary; as quickly as
the project had died, it was alive again.

IT’S JUST FOR GAMES…RIGHT?

Why link a Gameboy Color or Gameboy Advance to any-
thing? From a pure gaming perspective, a 3-ft game-link ca-
ble connects Gameboys for multiplayer games, to unlock
otherwise-unreachable features, and to trade virtual pos-
sessions among systems. In this day of online connectedness,
3 ft is short. Look at the Gameboy as a handheld terminal,
and the reason for connectedness becomes even more ex-
citing than mere games.

Whenever I told anyone about this project, an incredu-
lous laugh and comment about playing video games at work

always followed, but that situation changed as they
considered this question: How many program-
mable, backward-compatible, handheld terminals

can boast more than 100 million units shipped
since 1989 and all that experience with ruggedness

and ergonomic design issues that these devices rep-
resent? The older color and new advance versions pro-

vide a color LCD; sound; volume control; headphone
support; multiple input buttons, including four in a di-

rectional configuration; serial and infrared I/O (color);

GGAAMMIINNGG as
serious business

By Robert Cravotta, Technical Editor

48 edn | February 7, 2002 www.ednmag.com

pr jecthands-on

www.ednmag.com February 7, 2002 | edn 49

Im
age courtesy of M

ike O’Leary

dc-power support; and a small cartridge
to change programs. In addition, these
versions can operate on AA batteries for
10 to 15 hours (201 hours personal ex-
perience with the color version). A local
retail store recently had the color version
in stock for $70 and the advanced version
for $90. The advanced version was not in
stock because it was recently released, and
holiday purchasing was at a peak. With a
32-bit ARM processor powering the ad-
vanced version and an 8-bit, z80-like
processor powering the color version,
these systems can be interesting for
nongaming applications (see sidebar
“Shrink your product-controller costs”).

WHICH INTERFACE?

The goal was to connect a Gameboy
with one of its proprietary interfaces to
a standard interface, such as would be
available on a desktop computer. I start-
ed with my child’s Gameboy Color that
supports connection through a game-
link port, an infrared port, or the car-
tridge slot (Figure 1). My equipment
lacks infrared ports but has wired and
wireless interfaces. Also, the Gameboy
Advanced dropped infrared support, so I
didn’t consider using the infrared port.
The initial project plan was to implement
both a wired and a wireless connection
that would not drain too much of the
Gameboy’s batteries.

A wireless connection complements the handheld,
untethered feel of the Gameboy, and 802.11b was the
obvious choice for the wireless connection because my
system already had the capability. One reservation I had
about using a wireless connection was that it would cost
more than the Gameboy itself, but realizing that the
system would still cost less than a contemporary hand-
held computing device with the same connection off-
set that drawback. For a wireless connection, external
power to the 802.11b interface device would have been
an unreasonable luxury; it would too quickly drain the
Gameboy’s batteries and could risk damaging the
Gameboy. When I discovered the Gatesboy cartridge
on the Web, implementing the wireless connection
through the Gameboy-cartridge slot became an obvi-
ous choice.

The Gatesboy acts like a color-version game car-
tridge to a Gameboy Color or Gameboy Advanced, but
you wouldn’t confuse the Gatesboy for an official car-
tridge because it is about the size of a Gameboy and

lacks a connector to accommodate an official cartridge,
further emphasizing the nongame intention of this unit
(see sidebar “Reverse-engineering”). The fully encased
unit extends into the Gameboy-cartridge slot; supports
program downloads and five bidirectional lines
through a DB25 connecter; accommodates two daugh-
terboards for custom hardware; has a slot suitable for
a SmartMedia card or ribbon cable; and uses an STMi-
croelectronics’ PSD813F2 with 128 kbytes of flash
memory, 2 kbytes of RAM, and 3000 gates of pro-
grammable logic. It has space in the casing that can ac-
commodate batteries. Even though I used the Gatesboy
to load and run the custom programs, I had to drop the
wireless connection portion of the project due to time
constraints.

For a wired connection, the goal was to use a smart
cable that would bridge the game-link interface to a
desktop computer and receive power externally to min-
imize the eventual controller bulge in the cable. The
game link can provide power through one of the pins,
so the smart cable can, in a worst-case scenario, obtain

50 edn | February 7, 2002 www.ednmag.com

SHRINK YOUR PRODUCT-CONTROLLER COSTS
What would it mean to your
product’s bill of material,
assembly, and maintenance
costs if you could reduce the
control interface to a single con-
nector supporting an electrical

interface to your control proces-
sor? Using a programmable,
handheld terminal, such as a
Gameboy, that presents a non-
threatening form factor to inter-
face and transfer the operator’s

commands to the product con-
troller, you can amortize the
cost for that handheld terminal
across many products.

The Singer Sewing Co
achieved this goal with its Izek
sewing machine (FFiigguurree AA). The
company first distributed these
sewing machines in Japan and
assumed that buyers owned
Gameboys. In contrast, when
Singer marketed the machine in
the United States, the company
bundled a Gameboy with it. You
can see a controller demonstra-
tion at www.meetizek.com.
Using a terminal allows local-
ized control, help, and tutorial
information to reside in the ter-
minal, available when the user
needs it most without referring
to the owner’s manual. You can
program new stitches and man-
age and share your stitch pat-
terns with others nearly any-
where and at any time using the
Gameboy handheld system.

Unfortunately, Singer has
stopped further work on the
second generation of the Izek
sewing machines. Even though
the interface is easier to use
than the traditional mechanical
one, sales were growing too
slowly. Does this mean that a
handheld controller is a bad
idea or that users are reluctant
to consider a game toy for con-
trolling a serious piece of equip-
ment?

Convergence may happen in
consumer-electronic products.
However, nearly ubiquitous,
programmable, handheld termi-
nals, such as cell phones, might
be avenues of convergence for
control interfaces, provided that
the various control devices can
operate the same software.
Amortizing the control interface
across many products repre-
sents significant cost savings to
manufacturers and consumers.

LANGUAGE

ENGLISH

FRANCAIS

ESPANOL

PATTERN NO.
B-007

SINGLE PATTERNS

F igure A

Using a Gameboy as the controller for Singer’s Izek sewing machines
reduces not only the cost and mechanical complexity of the stitch-pro-
gramming interface, but also the time a user must spend at the sewing
machine when programming stitches (top). It also allows for on-the-
spot localization of control, help, and tutorial material (bottom).

power through it, but power from the
desktop connection is better.

A few years ago, I owned nothing that
supported USB. Now, it seems that every-
thing new supports it, and I recently con-
nected a new printer via USB instead of
the traditional parallel port. USB offers
hot-swapping and plug-and-play sim-
plicity so that any user can connect his or
her USB enabled Gameboy to the com-
puter. I have less confidence that any user
can properly use a serial or a parallel port
connection. Because USB defines that the
host will provide a minimum current, the
smart cable would not have to drain
power from the Gameboy batteries. A
search for a USB/Gameboy adapter re-
vealed that none was available but that
interest for one exists.

As a future-looking consideration, the
developments in the USB OTG (On-
The-Go) specification allow USB devices
to appear peer-to-peer (Reference 5). It
defines dual-role devices with limited
host capabilities that support host nego-
tiation that transfers the host function
between two devices without switching
the cable. This development suggests in-
teresting direct-connection possibilities

between enabled devices in the future.
Because the USB host must provide a
current, the USB/game-link adapter can
never be the A device in an USB OTG
connection unless modified to provide
current on the Vbus.

PARTS AND TOOLS

Trying to avoid building the adapter
from scratch, I found a number of USB
interface and development boards at
DevaSys and a reference to an interface
board that would be using a Cypress EZ-
USB FX2 USB microcontroller, a candi-
date device for this project. When I in-
quired about the board and explained

what I was trying to do, DevaSys owner
Michael DeVault offered to modify the
existing USB I2C/I/O interface board that
uses a Cypress AN2131QC, also an EZ-
USB microcontroller, to work with the
game-link interface. The board comes
with a programmer API that simplifies
adding USB to your application (see
sidebar “Encapsulating USB”), pro-
gramming examples, and a debugging
utility to monitor what API transactions
the board firmware is executing.

The EZ-USB has “re-enumeration”
that can release the on-chip 8051 from
reset after downloading custom code
from the host and appear as a new device
that has just entered the bus to the host.
This technique allows the firmware up-
dates in the interface board by changing
the code loaded during start-up from the
host. This approach meant for the proj-
ect that firmware updates were as simple
as loading a file into a Windows system
directory. The most complicated part of
updating the firmware was handling fil-
tered files because the e-mail server kept
replacing executables with text files. This
situation was true even for .txt files in a
compressed file, which is baffling, be-

AT A GLANCE

ee Thinking out of the box can help you
find new strengths for narrowly defined
systems.

ee Successful and extensible architectures
encourage reverse-engineering and can
spawn unintended uses.

ee Unintended uses can sometimes hurt a
product’s profitability or open new markets.

pr ject hands-on

52 edn | February 7, 2002 www.ednmag.com

REVERSE-ENGINEERING
One of the challenges of suc-
cess is that other people will
attempt to reverse-engineer
your design for their own ends,
despite your efforts to the con-
trary. Although an emulator is a
powerful development tool and
the ability to make safeguard
copies of programs you have
purchased is legitimate, the
availability of these two capabili-
ties have meant potential loss of
revenue for Nintendo because
people can avoid buying a
Gameboy and cartridges to play
games. Nintendo has successful-
ly shut down some companies
that sold products that have lit-
tle apparent value except to per-
mit someone to access, copy,
and play games without pur-

chasing a proper license. The
Gameboy Advanced has the
ability to copy a program from
one device to another without
using a cartridge in the other
Gameboy Advanced, and that
fact may explain the reluctance
to share the game-link-interface
specifications. The Gameboy
Color, which this project used,
does not support this capability,
but, as projects on the Web
show, a little information can
result in many unintended uses
of a narrowly defined product
(rreeffeerreenncceess AA, BB, CC, and DD).

Not all reverse-engineering
efforts have negative results for
a company. Lego Mindstorms,
which incorporates microproces-
sors, sensors, and motors into

Lego bricks may have actually
benefited from reverse-engi-
neering activities (RReeffeerreennccee EE).
Engineers, researchers, and hob-
byists reverse-engineered the
firmware, created new program-
ming tools, and developed unin-
tended ways of connecting the
systems to the world. Rather
than pursuing legal action to
squelch this activity, the compa-
ny has made available internal
documentation for its firmware,
sponsored conferences dis-
cussing theory and applications,
and includes links to independ-
ent development tools on its
own Web pages. Don’t expect
this kind of support if you try to
produce blocks that interlock
with Lego’s.

References
A. Gameboy and Gameboy

Advanced Development Web
Rings, http://d.webring.com/
hub?ring=gameboydev and
http://c.webring.com/hub?ring=
thegameboyadvanc.

B. Gatesboy, www.gatesboy.
com.

C. Frohwein, Jeff, Gameboy
and Gameboy Advanced,
www.devrs.com.

D. Ziegler, Reiner, Gameboy
and Gameboy Advanced,
www.reinerziegler.de.

E. Wallich, Paul “Mindstorms:
not just a kid’s toy,” IEEE
Spectrum, September 2001,
Volume 38, No. 9, www.
spectrum.ieee.org/pubs/
spectrum/0901/mind.html.

cause you cannot execute a .txt file. Chalk
it up to overcaution about virus attacks.
The work-around (proceed immediate-
ly to the next paragraph if you work for
IT) was to rename the files to an uncen-
sored type.

There were two other targets for soft-
ware development: the Gameboy and the
Windows host computer. Because the
demonstration application was not go-
ing to be a performance-stressing appli-
cation, I opted for the Gameboy Devel-
oper’s Kit and Microsoft Visual Studio so
that I could program both targets in C.
The last set of tools I used were some
DOS-based utilities to convert the Game-
boy binaries and load them onto the
Gatesboy (Reference 6). Although sever-
al Gameboy emulators are available, I did
not use any of them and instead de-
bugged directly on the target. There were
no parts to remove or insert, and I quick-
ly automated the compilation and load-
ing process so that it took only a few
moments between iterations. And, be-
cause the Gameboy did everything in re-
sponse to a button push or a message
from the host, plenty of mechanisms
were available to simulate breakpoints
and examine the system state.

THE GAME-LINK PORT

After configuring the tools and hard-
ware connections (Figure 2), it was time
to bridge the game-link interface. The

specification of the
game-link port is a sen-
sitive issue, so I will de-
scribe it in general terms.
The game-link port on a
Gameboy Color is not a
UART but a memory-
mapped shift register,
and, when you link it by
a serial cable to another
Gameboy, it can simulta-
neously feed and be
fed by the shift regis-
ter on the other system.
In a normal configura-
tion, either Gameboy
generates the shared
clock pulses that swap
the shift-register contents.

Even though the USB I2C interface
board was overkill for the USB/GL
adapter, it reduced the effort for new
hardware and permitted the adapter ef-
fort to focus exclusively on the game-link
interface. As a result, I accepted a few
compromises. The adapter failed to offer
exactly the same functions as a real game
link: It generated the serial clock for all
reads and writes, whereas the Gameboy
generated none. The physical link was
half-duplex. When the adapter was
transmitting to the game link, it received
no data, and, when receiving data from
the game link, an unspecified value was
in the game-link register. These com-

promises were acceptable
because the adapter was not
intended for use with stan-
dard game communica-
tions. This situation per-
mitted the effort to focus on
relevant data communica-
tions and circumvented the
irrelevant specifics regard-
ing message delays to
bridge two standard game
instances through the inter-
face.

I didn’t need to test the
USB connection because
the interface board already
supported it. To initially test
the game-link connection,

the adapter passed through single-byte
messages from a modified sample pro-
gram running on the host to the game-
link connection. The software on the
Gameboy echoed the byte received to the
display. The demonstration software
used custom routines to replace the low-
level serial-I/O functions in the develop-
ment kit. Port initialization became im-
portant because the first serial character
received after powering the Gameboy on
could be undefined.

While debugging the link interface, I
discovered how mixing Windows- and
DOS-based tools can lead to unintend-
ed results. Windows supports long file
names, and I named the project and the

The Gameboy Color system I
used in this project can do
more than play games.

F igure 1

pr ject hands-on

file “terminal.c.” I added a
version letter at the end of
the name to differentiate be-
tween iterations and usually
remembered to change the
version identifier in a display
message. Imagine my sur-
prise when I finally figured
out that I had been loading
the terminal.c version of the
code instead of the termi-
nalx.c version because DOS
truncated the file name at
eight characters. I might have
noticed sooner if the termi-
nal.c version had more than
just the subtle initialization
issue. I ultimately confirmed
this fact by checking
the display version
identifier. Consequently, I
shortened the project name
to termx.c.

After the interface link was
working properly with single
bytes, the development
added multiple-byte-mes-
sage support. When testing
focused on receiving multi-
ple-byte messages from the game link,
the USB I2C debugging utility helped
identify that clock generation stopped af-
ter receiving the first message byte. This
was an artifact from the single-byte mes-
sage testing and was fixed by removing
processing for the purely test-case single-
byte message. The last development step
added the communication-link protocol
that the adapter processed for each side
of the connection. The game-link link
side comprised a length byte followed by
a message of that length. The USB side

added a control for intercharacter delay
and return status that required nothing
from the game link. The final deliverable
for the adapter was a Windows driver file,
an 8051 executable that the Windows
driver automatically loaded onto the
adapter when you plugged it in, and a
Windows DLL that included the new
Gameboy-specific API functions.

END-TO-END DEMONSTRATION

It was now time to develop an end-to-
end demonstration of the USB/GL

adapter in a nongame ap-
plication. The choices
were limited only by how
much time it would take to
build something the
Gameboy could interact
with or control. I decided
to implement a handheld
inventory terminal. When
I was working in retail
years ago, we frequently
performed a physical in-
ventory to synchronize the
computer inventory with
reality. If the project had
included extending the ca-
pability of the Gameboy
beyond a USB connection,
the Gatesboy could add a
bar-code-reader interface
to make this application
more robust and func-
tional. However, the retail
application lacked the time
for that operation, so the
operator would manually
update the inventory by
pushing buttons on the
front panel.

The first challenge I faced while work-
ing with the Gameboy is its small display:
20 characters wide and 18 lines high.
(The advanced version extends those
specs to 30 characters wide and 20 lines
high.) This amount of space is not
enough to display on one line a stock
number, an item description, a quantity,
and an indicator that detects when a se-
lected inventory item still needs updat-
ing. One choice would be to use more
than one display line per item. Another
approach would segregate the display
into limited-list and detailed-item sec-
tions. I could also have used one line per
item but supported scrolling the item de-
scription. With the two-line approach,
item descriptions could be longer than 20
characters, so I would still need a scroll
routine. During an inventory exercise,
the item description is a sanity check be-
fore updating a stock-item entry, so see-
ing only a portion of the description is
fine. The four cross-hair-configured but-
tons provide a convenient way to move
a selected line up or down and scroll the
item description left or right. I opted for
the one-line-per-item approach, al-
though if I were to repeat the project, I
would seriously consider doing a segre-
gated display (Figure 3, top).

Programming in graphics mode is the

54 edn | February 7, 2002 www.ednmag.com

ENCAPSULATING USB
The USB I2C/I/O API encap-
sulates the USB specifics on
the Windows host computer
using static or dynamic
linked DLLs in your C or
Visual Basic program so that
you can concentrate where
it matters most: your appli-
cation. LLiissttiinngg AA shows a
subset of the available API
functions, including the
two application-specific
calls for the game-link
interface.

The USBGB_TRANS
structure includes, in addi-
tion to the message, pre-
transfer control to the USB
I2C/I/O board, such as inter-
character delay, and post-

transfer status to the host,
such as distinguishing
between no message was
ready and a disconnected or
unpowered Gameboy.

LISTING A—SUBSET OF API FUNCTIONS

The development system includes a Gameboy Color with a Gatesboy car-
tridge inserted (right). The parallel cable (top right) allowed program down-
loading to the flash memory. A modified game-link cable connects the
Gameboy to the DevaSys USB I2C/I/O interface board (left), and the USB
cable (top left) completes the datapath to the desktop computer.

F igure 2

pr ject hands-on

56 edn | February 7, 2002 www.ednmag.com

only way to produce colored text. I
worked in text mode to minimize
the complexity of the project, so I
created a blinking routine to easily
identify which line was selected.
Also, the Gameboy LCD has no
backlighting so as to prolong bat-
tery life. Viewing the display re-
quires a good ambient-light
source—usually not a problem in
most business environments.

I developed this inventory appli-
cation on a system with 128 kbytes
of program flash and 2
kbytes of RAM. The flash
memory is not internally pro-
grammable, so I designed the
memory to emulate nonvolatile
memory and limited the database
to fit within the available RAM. As
a practical matter, though, 64-
Mbyte flash cards are available for
the color version, and 256-Mbyte
cards are available for the advanced
version. The color version has 16-
bit-based addressing and uses bank
switching to extend the available
address space to 64 Mbytes.

The Gameboy lacks a touch-
screen, so the eight buttons and
their arrangement require your
display interface to accommodate
mouselike or joysticklike controls. The
Gameboy also lacks an extended keypad
or keyboard. This constraint was sur-
mountable because many applications
run well with only mouse controls. I de-
fined the cross-hair buttons to support
navigation and description scrolling and
the A and B buttons to increment and
decrement the quantity of the selected
item. You could use the remaining two
buttons, which remained undefined, for
mode-switching and menu navigation to
set display filters, searching in a long list,
handling nonstandard items, or doing
anything else that might enhance accu-
racy during a manual inventory.

WIZARDS CANNOT SLAY ALL MONSTERS

To complete the application, the mas-
ter inventory system would reside on a
Windows computer and communicate
with the Gameboy module (Figure 3,
bottom). My first inclination was to
write a console/DOS-like program for
the master inventory system. Working
with the sample programs for the USB
adapter, I decided to try my hand at Win-

dows programming using the Microsoft
Visual Studio. Although the code wizard
was moderately useful to get the initial
database structure running with a Win-
dows interface, the code did not help me
figure out how to manipulate the data
from the code rather than the display.
The Microsoft’s online references and
technical FAQs were invaluable for un-
derstanding how to manipulate the Win-
dows data structures (Reference 7).

I lacked the time to figure out how to
display the database as a 2-D table, but I
could read and modify it with Access
2000. The working program can display,
examine, and modify all of the inventory
items in the database. I used Access 2000
to expand and shrink the inventory rather
than spend time implementing those
functions within the main application.

Beware when programming for mul-
tiple targets in the same development en-
vironment: It can cause some confusion
if you’re not careful. I extended the Mi-
crosoft Visual Studio to support the DOS-
based Gameboy cross-compiler and link-
er so that I could do all of my pro-

gramming in one environment.
The development environment
looked identical for both programs,
but the two compilers did not im-
plement all functions, such as type
casting, in the same way.

Even with program wizards to
help with Windows programming
and an USB/game-link API to en-
capsulate the interface, the task of
connecting the Gameboy and desk-
top computer required another
communication layer. Sending
messages from the Windows pro-
gram involved calling an API func-
tion followed by another call to re-
trieve a response from the
Gameboy. The inventory terminal
program constantly stuffed an
empty message into the transmit
buffer in case the host requested a
response before one was ready. The
host program might have to re-
peatedly query the terminal pro-
gram to allow time for a response.
The low-level serial routines on the
Gameboy disabled external clock-
ing when reading or writing to the
register port. Sometimes, a serial
glitch occurred or the Gameboy
was powered up; either of these sit-
uations could throw the two pro-

grams out of step. When the terminal
program received an invalid message, it
flushed the input buffer and load the null
message into the transmit register while
waiting for a new valid message. The host
resent the message if it received no valid
responses. This series of retries and re-
sends defined a time-out error condition
and provided a method for resynchro-
nizing the two programs.

After I completed the integration and
the programs were all playing nicely with
one another, I could load the master copy
of the inventory database from the Win-
dows host to the Gameboy. An operator
using the system could now take the
Gameboy to the stockroom and modify
the count accordingly. If the operator
needed to see more of an item descrip-
tion, he or she could scroll the descrip-
tion left and right to verify the descrip-
tion with the stock number. After
completing the manual inventory, the
operator could synchronize the master
database. The system could recover from
a broken communication. The project
successfully demonstrated a realistic,

An inventory terminal program runs on the Gameboy (top),
which communicates through the USB/game-link interface
with the Windows master inventory program (bottom).

F igure 3

pr ject hands-on

58 edn | February 7, 2002 www.ednmag.com

nongaming application on a Gameboy
that used the connection of the propri-
etary game-link interface to a standard
USB interface.

ISN’T IT OBSOLETE?

With the introduction of the Game-
boy Advanced, why would anyone de-
velop Gameboy Color applications? New
Gameboy Color systems will not likely
be available soon. The Gameboy Color
system and development tools were
more readily available than the advanced
version when I started the project. Since
then, the available resources for Game-
boy Advanced development have signif-
icantly matured. Because the Gameboy
Advanced executes legacy Gameboy soft-
ware, little risk exists that the effort of
this project would become obsolete. The
game link of the two systems, however,
is not identical. Advanced mode defines
the reserved game-link pin, but it is un-
used and, thus, is transparent to this
project.

If I began the project now, the Game-
boy Advanced seems a clear choice of
platform. It offers not only more mature
tools, but also a 50% larger LCD, greater
color depth, two extra buttons, 50%
longer battery life, 50% smaller game car-
tridges, and a new UART interface in a
thinner system that is only 77 mm2 larg-
er (Reference 8). The Gameboy Ad-
vanced includes a z80-like processor for
color mode and an ARM/Thumb proces-
sor for advanced mode. The processors
are mutually exclusive, and the presence

or absence of a physical notch on the
game cartridge determines their selec-
tion. For software-only projects, a pro-
prietary MultiBoot cable allows you to
test programs using the 256 kbytes of
writable RAM that every Gameboy Ad-
vanced has without needing a program-
cartridge programmer. You cannot test
z80-based programs in this way.

Using the cartridge interface and cus-
tom hardware capability of the Gatesboy
still works with a Gameboy Advanced
because the system runs in the z80 mode,
so a project using it to extend the hard-
ware capabilities to include 802.11b or
Bluetooth is still viable. To extend that
capability using advanced-mode pro-
grams, though, you must change not
only the pc board inside the Gatesboy,
but also the casing with a physical notch
to select the advanced mode in the
Gameboy.

After working with this platform, I can
think of many exciting ways to use hand-
held terminals to enhance the interface
and control for many applications. The
dual-processor architecture of the latest
system is evidence of the commitment to
support legacy resources spanning the
last 12 years, and it provides better capa-
bilities. The Gameboy, at the height of
competition for handheld gaming sys-
tems, did not provide the highest per-
formance or the largest color support. In-
stead, it provided just the right amount
of performance, features, pricing, soft-
ware selection, and battery life that best
met the customer’s needs. Interestingly,

the new Gameboy Advanced adopted an
ARM processor, not unlike many other
handheld devices. A ubiquitous hand-
held architecture that many applications
can share, that can maintain that kind of
legacy support, and that can garner wide-
spread adoption as an interface/control
device will do much to decrease the cost
and increase the reliability of those de-
vices that consumers and businesses use
every day.k

Acknowledgments
Special thanks to Michael DeVault of
DevaSys for working closely with me and
modifying the DevaSys USB I2C/I/O in-
terface board to interact with the game-
link interface. Also special thanks to David
Nathan of Gatesboy for making the Gates-
boy cartridge available.

References
1. Gameboy Developer’s Kit (GBDK)

homepage, http://gbdk.sourceforge.net.
2. Gameboy and Gameboy Advanced

Development Web Rings, http://d.we-
bring.com/hub?ring=gameboydev,
http://c.webring.com/hub?ring=thegam
eboyadvanc.

3. Frohwein, Jeff, Gameboy and Game-
boy Advanced, www.devrs.com.

4. Ziegler, Reiner, Gameboy and Game-
boy Advanced, www.reinerziegler.de.

5. On-The-Go Supplement to the USB
2.0 Specification, www.usb.org.

6. Gatesboy, www.gatesboy.com.
7. Microsoft Visual Studio Technical

FAQs, http://msdn.microsoft.com.
8. Nintendo, www.nintendo.com.
9. Wallich, Paul “Mindstorms: not just

a kid’s toy,” IEEE Spectrum, September
2001, Volume 38, No. 9, www.spec-
trum.ieee.org/pubs/spectrum/0901/min
d.html.

10. DevaSys drivers and application
notes, www.devasys.com.

Author’s biography
Technical Editor Robert
Cravotta first cut his
programming teeth on a
z80 microprocessor sim-
ilar to the one in the
Gameboy Color. Some

of the projects he completed with that
processor were an assembler, a database,
and a method for dynamically relocating
code that accommodated ROM calls in a
nonbanked architecture. You can reach
him at 1-661-296-5096, fax 1-661-296-
1087, e-mail rcravotta@cahners.com.

FOR MORE INFORMATION...
For more information on products such as those discussed in this article, go to www.ednmag.com and click
on the Reader Service link under the Tools & Services section. When you contact any of the following man-
ufacturers directly, please let them know you read about their products in EDN.

ARM
1-408-579-2200
www.arm.com
Enter No. 301

Cypress Semiconductor
1-408-943-2600
www.cypress.com
Enter No. 302

DevaSys Embedded Systems
1-716-377-9428
www.devasys.com
Enter No. 303

Gatesboy
+41-22-366-81-11
www.gatesboy.com
Enter No. 304

Lego
`45-79-50-60-70
www.lego.com
Enter No. 305

Microsoft
1-425-882-8080
www.microsoft.com
Enter No. 306

Nintendo
1-800-255-3700
www.nintendo.com
Enter No. 307

Singer Sewing Co
1-615-213-0880
www.singerco.com
Enter No. 308

STMicroelectronics
1-718-861-2650
www.st.com
Enter No. 309

Zilog
1-877-945-6427
www.zilog.com
Enter No. 310

SUPER INFO NUMBER
For more information on the
products available from all of the
vendors listed in this box, go to
www.ednmag.com, click on the
Reader Service link, and enter
no. 311

pr ject hands-on

